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Abstract

Using primary effects of operators in planning is an effective approach to reducing planning
time and improving solution quality. However, the characterization of “good” primary effects
has remained at an informal level. In addition, no method has previously been known to
automatically learn the primary effects of operators from a given domain specification. In
this paper we formalize the use of primary effects in planning, present a criterion for selecting
useful primary effects that guarantee the efficiency and completeness of planning, and prove
the near-optimality of solutions found by planning with primary effects. Based on the
formalization, we describe an inductive learning algorithm that automatically selects primary
effects of operators. We show that the learning algorithm performs efficiently, producing
plans that are near-optimal with high probability. We also empirically demonstrate the
effectiveness of the learned primary effects in reducing search.
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1 Introduction

We are interested in automatically finding primary effects of planning operators to improve
planning efficiency and solution quality. In plan construction, an operator might have a large
number of effects, only a few of them being of special importance to the problem at hand.
The idea of primary effects is to specify certain effects of a planning operator as primary,
and to use an operator during planning only for the purpose of achieving its primary effects.
A primary-effect restricted planner never inserts an operator into a plan for the sake of its
side effects.

In this paper we formalize the intuition behind the use of primary effects and present a
learning algorithm to automatically select primary effects with good quality. To begin with,
we consider the following motivating examples.

1.1 Motivating Examples
Example 1.

Imagine a house with a fireplace in the living room. The fireplace may be used to warm and
to illuminate the room. If the tenant of this house has electric lamps in the living room, she
would probably view illuminating the room as a side effect of lighting the fireplace. That is,
she would not use the fireplace if her only goal were to illuminate the room, since electric
lamps are easier to use and electricity is cheaper than wood. Thus, warming the room is a
primary effect of using the fireplace.

Example 2.

In our second example, suppose that you are going to a computer store to buy diskettes.
The primary effect of this action is obtaining diskettes — this is your main goal. Side effects
are spending $20, having a pleasant walk on a sunny day, and so on.

We consider this example in a little more detail. One would not go to a computer store
in order to spent $20 or have a pleasant walk, because these goals could be achieved more
easily by some other actions. For example, if your only goal were to have a walk, you would
probably go to a nearby park rather than to a computer store. Thus, one aspect of using
primary effects is to view a result of an action as a side effect if this result can always be
achieved by another, cheaper plan. '

In this example the quality of a solution plan is defined as the sum of the costs of operators
used in the plan. In this model, the smaller the total cost of the operators, the better the
quality of the plan.

Example 3.

Our next example is a modified version of the robot world from [Fikes and Nilsson, 1971].
This world consists of four rooms and a robot (see Figure 1a). The robot can perform two
different actions: go between two rooms connected by a door and break through the wall
to create a new door (see Figure 1b). The break operator not only creates a new door, but
also moves a robot to the room behind the broken wall.
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(a) A “map” of the robot world (b) Operators

Figure 1: The robot world.

Notice that changing the location of a robot in this world can always be accomplished by
a series of go operators, without breaking through walls. Thus, the change of robot’s loca-
tion can be considered as a side effect of the break operator. When a planner searches for
a plan for moving the robot, it may use this knowledge to reject the break alternative and
consider only the go operators. We show in Section 4 that this saving in the number of con-
sidered alternatives grows exponentially with the search depth. Thus, reducing the number
of alternative choices of operators during planning could improve the search efficiency.

1.2 Overview

The advantage of using primary effects has been recognized early in planning research.
STRIPS [Fikes and Nilsson, 1971] utilized primary effects as a means to control the qual-
ity of solution plans. SIPE [Wilkins, 1988] distinguished between the “main effects” and
the “side effects” of operators and used this distinction to simplify conflict resolution in
planning. PRODIGY [Carbonell et al., 1991, Knoblock, 1991a)] allows the user to specify
primary effects of operators, which are then used as an effective method to control search.
The ABTWEAK planner [Yang and Tenenberg, 1990, Yang, Tenenberg and Woods, 1991]
also allows the user to specify primary effects, the use of which significantly improves the
efficiency of planning.

Despite the importance of primary effects, the characterization of a “good” selection
of primary effects has remained on an informal level. Furthermore, no method has been
proposed to automatically select primary effects for a given domain definition. All existing
systems rely on the human user to select primary effects. If the user has not chosen primary
effects, then by default all effects are assumed to be primary.

The lack of formal guidelines for selecting primary effects could cause three serious prob-
lems in planning. First, an improper selection of primary effects may result in the loss of
completeness in planning. This happens when a planner that uses primary effects cannot
find a plan for a solvable planning problem. In Example 1, if a fireplace is the only source
of light, but lighting is not chosen as a primary effect of using fireplace, a primary-effect
restricted planner will not find a plan for illuminating the room.

Second, ill-selected primary effects may produce non-optimal solutions to planning prob-
lems. This could happen because primary effects place a bias in directing the search for a
solution. If not set properly, the bias can favor a search path toward a costly solution. In
Example 3, if the change of location is taken to be one of the primary effects of the break




operator but not of the go operator, then a planner would only consider breaking walls as a
means for the traveling from one room to another. The cost of the resulting solutions may
be much higher than simply going between rooms.

Third, although using primary effects can reduce the branching factor of search, the
search depth could increase if the primary effects are not chosen correctly. With a best-first
search, the search depth is determined by the cost of the optimal solution to a problem.
However, an ill-selected set of primary effects can preclude the optimal solution from even
being present in the search space of a planner. With a more costly solution plan, the search
depth could be dramatically increased, leading to a less efficient planner than one that uses
all operator effects.

The purpose of this paper is twofold. First, we pinpoint the exact reason for a primary-
effect restricted planner to be incomplete and non-optimal. This result is presented in the
form of a theorem, which states the necessary and sufficient condition for a primary-effect
restricted planner to be complete and to produce solutions that are good approximations to
the optimal solution. Thus, the theorem formalizes the intuitions behind “good” choices of
primary effects. Using the theorem, it is now possible to determine whether planning with
primary effects preserves completeness and good solution quality.

Second, we present an inductive learning algorithm to automatically select primary ef-
fects. Although learning the best set of primary effects in general is undecidable, with
our learning algorithm we guarantee that the learned primary effects exhibit the following
properties:

(a) The completeness of planning is preserved with high probability.
(b) The planner almost always finds a near-optimal solution.
(c) The use of primary effects dramatically reduces the planning time.

An initial set of primary effects can be first chosen by the user or by an initialization
algorithm. The learner then uses either a collection of previous plans or new plans generated
by the planner as examples to augment the set of primary effects of operators. Our analysis
shows that the use of the learned primary effects considerably reduces the planning time.
Furthermore, through empirical tests, we show that the use of the learned primary effects
leads to dramatic improvement of planning efficiency.

1.3 Basic Assumptions

Search complexity and solution quality are two main factors that concern most classical
planners. In this paper, we assume that we are working with a planning algorithm based on
best-first search. We also assume that every operator has a numerical cost value, and the
cost of a solution plan is the sum of the costs of operators in the plan.

Under these assumptions, a best-first-search based planner should be able to find the
optimal solution when no distinction is made between primary and side effects. However,
without using primary effects the search space might be too large to be handled by the
planner. When primary effects are used, the branching factor of search would decrease,
while both the search depth and the solution cost might increase. Our basic approach then
is to strike a good balance between the branching factor and the search depth so that when
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combined they result in a more efficient search than without using primary effects. At the
same time, we make sure that the cost of a solution is within a small constant factor from
the cost of the optimal solution. '

In our discussion and implementation we use a version of the TWEAK planner [Chapman,
1987]. However, the theory of primary effects and the learning techniques presented in the
paper are not limited to TWEAK. The only requirement is that during the learning phase
a planner that is capable of finding an optimal solution to planning problems is used.

Historically, primary effects were also used to enable depth-first search planners, such as
STRIPS, to improve the solution quality by directing search to low-cost solution plans. In
this article we do not address this use of primary effects and concentrate on the problem of
reducing planning time.

To summarize, the main purpose of this article is to improve the efficiency of classical
planning algorithms by using primary effects. Primary effects are selected by a learning
algorithm, whose goal is to minimize the planning time while ensuring a near-optimal quality
of the solutions generated by the planner, where the quality of a solution is defined as the
total cost of its operators.

1.4 Outline of the Article

The article is organized as follows. First, we formalize the notion of planning with primary
effects (Section 2) and describe conditions that ensure the completeness of planning and
solution quality (Section 3). Then we analyze the search space of planners that use primary
effects and derive conditions under which the use of primary effects increases the efficiency of
planning (Section 4). In Section 5 we present an inductive learning algorithm that automat-
ically chooses primary effects, and in Section 6 we derive the time complexity and sample
complexity of the algorithm. In Section 7 we present a series of experiments, demonstrating
the effectiveness of the primary effects found by the learning algorithm in reducing planning
time. Section 8 discusses possible extensions to the learning algorithm.

2 Using Primary Effects in Planning

In this section we introduce the basic concepts used throughout the paper, describe the use
of primary effects in planning, and present the Prim-TWEAK planner, a version of TWEAK
[Chapman, 1987] for planning with primary effects. First, we define planning domains of
the TWEAK planner and plans generated by TWEAXK (Section 2.1). Then we describe the
use of primary effects in planning (Section 2.3) and formalize the notion of primary-effect

justified plans (Section 2.2).

2.1 Definition of a Planning Domain

A planning domain is defined by a library of operators. Each operator o is defined by a
set of precondition literals Pre(a) and a set of effect literals Eff(c). If a literal [ is an effect
of a, we say that o achieves I. If =l is an effect of e, we say that o deletes I. A literal is

achievable if it can be achieved by at least one operator in the library.
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Figure 2: The robot planning domain.

A planning problem is defined by an initial state and a goal state, where a state is a set
of literals. A total-order plan is a finite sequence of operators. We say that a precondition [
of some operator « in a total-order plan is satisfied, if there is an operator a; before o that
achieves [, and no operator between oy and « deletes I. For simplicity, we view an initial
state as the first operator of a plan, denoted as n. This operator has effects that are
identical to the initial-state literals and has no preconditions. Similarly, the last operator
of a plan, @goal, Tepresents the goal of the plan. Its preconditions are identical to the goal
literals, and its effect set is empty. A total-order plan is called correct if all preconditions
of all operators are satisfied. In this case we say that the plan solves the planning problem
(ainita agoal)-

A partial-order plan Il is a partially ordered set of operators. The partial order represents
the order of execution of the operators in the plan. As in total-order plans, an; precedes
all other operators, and g is preceded by all other operators. A linearization of a partial-
order plan is a total order of the operators consistent with the plan’s partial order. We say
that a statement about a partial-order plan is possibly true if it is true for some linearization
of the plan. For example, an operator a; is possibly before oy if a; occurs before e in
one of the linearizations. We say that a statement is necessarily true if it is true for all
linearizations of the plan. In particular, a partial-order plan is necessarily correct (or simply
correct) if all its linearizations are correct.

The number of operators in a plan, not including the initial and goal states, is called the
size (or length) of the plan and usually denoted by n.

Example We describe an extended version of the robot domain presented in Section 1.1 (see
Figure 2). In our robot world, a ball is initially located in room 4. To describe a current state
of the domain, we have to specify the locations of the robot and the ball, and the connectivity
of rooms by doors. This may be done with three predicates, robot-in(z), ball-in(z),
and door(z,y). Literals describing a current state of the domain may be obtained from
these predicates by substituting specific room numbers for z and y. For example, the literal
robot-in(1) means that the robot is in room 1, ball-in(4) means that the ball is in room 4,
and door(1,2) means that room 1 and room 2 are connected by a doorway.

In this simple robot domain we assume that the doors are always open. The robot may
go between two rooms connected by a door, break through a wall, carry the ball through a
door, or throw the ball through a door into another room. These operators are described in




| Operator | Preconditions | effects | cost |

go(z,y) robot-in(z), door(z,y) | robot-in(y), ~robot-in(z) | 2
carry-ball(z,y) | robot-in(z), ball-in(z) | robot-in(y), ball-in(y) 3
door(z,y) —robot-in(z), -ball-in(z)
throw(z,y) robot-in(z), ball-in(z) | ball-in(y), ~ball-in(z) 2
doox(z,y)
break(z,y) robot-in(z) robot-in(y), —robot-in(z) 4
door(z,y)

Table 1: The operators in the simple robot domain.

Table 1.

Consider a planning problem with the initial state as shown in the figure. Suppose that
our goal is to bring the ball into room 3. This may be achieved by breaking through the
wall of room 4 (break(1,4)) and then throwing the ball into room 3 (throw(4,3)). O

To compare the quality of different plans, we introduce the notion of the cost of a plan.
We associate some positive cost with each operator, and define the cost of a plan as the sum
of the costs of its operators.

Definition 2.1 The cost of a plan II equals the sum of the costs of its operators (not includ-
ing the initial and goal states): cost(Il) = ¥ ey cost(a). An optimal solution of a planning
problem is a plan with the lowest cost that solves the problem.

For example, suppose we have to move the robot from room 1 to room 4, and we use the
plan (g0(1,2), go(2, 3), go(3,4)) to solve this problem. The cost of this planis 2+2+2 = 6.
Our solution is not optimal, since the same goal can be achieved by break(1, 4) with a cost
of 4.

2.2 Primary-effect Justified Plans

If an operator o has several effects, we may choose certain “important” effects among them
and use a only for the sake of these effects. The chosen important effects are called primary
and denoted by Prim-Eff(a). The other effects are called side effects. For example, we can
view the literal door(z,y) as a primary effect of the operator break(z,y), and robot-in(y)
as a side effect.

A plan is primary-effect justified if it does not contain “useless” operators [Yang and

Teneberg, 1990].

Definition 2.2 Let [ be a primary effect of an operator oy in some plan. We say that lis
a justified primary effect if there is an operator a with a precondition | such that

1. oy is necessarily before a, and
2. there is no operator necessarily between oy and o that achieves or deletes l
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with either primary or side effects.

Informally this condition states that the precondition ! of e is achieved by a; using a pri-
mary effect in some linearization of the plan. For example, consider the robot planning
domain with the selection of primary effects given in the last subsection. The plan (go(1,2),
g0(2,3)) is primary-effect justified for achieving the goal robot-in(3). In contrast, the plan
(break(1,3)) is not primary-effect justified, since changing the robot’s position is not a
primary effect of break.

2.3 Primary-effect Restricted Planners

Consider solving a planning problem defined by an initial state qjny and a goal ogoal. A
partial-order planner starts with a two-operator plan (CQinit, @goal)- 1t then inserts new opera-
tors and imposes ordering and variable binding constraints. While inserting a new operator,
an unrestricted planner may use any operator that achieves [. In contrast, a primary-effect
restricted planner always uses an operator with [ as a primary effect.

We use a primary-effect restricted version of the TWEAK planner [Chapman, 1987],
presented in Table 2, to illustrate the use of primary effects in the paper. Our techniques,
however, are not limited to TWEAK; any backward-chaining planning system can benefit
from the use of primary effects in the same way.

The version of TWEAK in Table 2 is called Prim-TWEAK. For simplicity, the algorithm
description in Table 2 does not show how Prim-TWEAK treats the variables in preconditions
and effects of operators; all variables are simply instantiated by constants. However, in
our implementation of Prim-TWEAK, used in the experiments of Section 7, we do impose
variable binding constraints.

Step 3A of the algorithm achieves a precondition [ of & by ordering the operators in the
plan, while Step 3B achieves [ by inserting a new operator. Step 6 makes sure that there
is no operator with an effect = between ¢; and . The search for unsatisfied precondi-
tions in steps 1 and 2 can be done in polynomial time (see the Modal Truth Criterion in
[Chapman, 1987]).

We emphasize that step 3B is the only place where the algorithm is restricted to using
primary effects. If all effects of all operators are selected as primary, then primary-effect
restricted and unrestricted planners are equivalent. This would correspond to removing the
word “primary” from step 3B of the algorithm and treating all effects as primary. In this
case, the algorithm becomes identical to the original TWEAK planner.

Branching points in the description of the algorithm indicate places where the plan-
ner may consider different modifications of the current plan, thus creating several different
branches of the search space. For completeness, the planner must consider all alternatives:
it must try all possible operators on Step 3 and all possible orderings on Step 6.

To solve a planning problem, Prim-TWEAK is called with the initial plan (Qnit, ®goal)-
If Prim-TWEAK cannot find a solution to the problem, it either terminates without any
output or runs forever.

Example Consider again the robot domain, with the following selection of primary
effects:




Prim-TWEAK(II)
1. If all operator preconditions in the plan IT are necessarily satisfied, then return II
2. Choose some operator « with an unsatisfied precondition /.
3. Let oy be either
(A) an operator of the plan II possibly before o with an effect /, or
(B) an operator in the library with a primary effect L.
Branching point: each a; corresponds to a different branch in search space.
4. If a; is an operator from the library, add it to II (without ordering constraints).
. Order oy before a.
6. For every a, with an effect =l possibly between a; and «
(A) order oz before oy, or

(B) order a; after «, or
(C) choose an operator with an effect [ in II and order it between o, and a.

Branching point: different orderings correspond to different branches of the search space.
7. Let II’ be the resulting plan. Recursively call Prim-TWEAK(II').

(@)

Table 2: Primary-effect restricted version of the TWEAK planner.

throw(z,y) {ball-in(y)}
break( ,y) {door(z,y)}

Assume that the initial state is as shown in Flgure 2, and the goal is to place the robot in
room 3. The goal may be achieved by breaking through the wall between rooms 1 and 3.
However, changing the position of the robot is not a primary effect of breaking through a
wall, and Prim-Tweak will not consider this possibility. Instead, it will find the solution plan

(go(1,2), g0(2,3)). O

go(z,y) {robot- 1n }
carry-ball(z,y) {ball-in(y

3 Completeness and Cost Increase

Having introduced the concept of primary-effect restricted planners, we now present the first
main result of the article. In this section, we point out two possible problems of planning with
primary effects: losing completeness of planning and generating non-optimal plans. Then
we present a necessary and sufficient condition of completeness of primary-effect restricted
planning. This condition will enable us to construct an algorithm for learning primary effects

(Section 5).

3.1 Completeness

One way to define a “good” planning algorithm is in terms of its ability to find a correct
plan for every solvable planning problem. A planner that satisfies this property is said to
be complete. For example, the unrestricted TWEAK algorithm is proved to be complete
[Chapman, 1987].

When using primary effects, we would like every solvable problem to have a primary-effect
justified solution to ensure completeness. A selection of primary effects with this property is
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called a complete selection. If a goal cannot be achieved by a primary-effect justified plan,
then a primary-effect restricted planner can fail to find a solution. We demonstrate this
point through the robot planning example.

Consider the following selection of primary effects:

go(z,y) {robot-in(y)}
carry-ball(z,y) {ball-in(y)}

‘ throw(z,y) {ball-in(y)}
break(z,y) {door(z,y)}

Assume that the initial state is as shown in Figure 2, and the goal is to move the robot out
of room 1. The formal description of this goal is {—robot-in(1)}. This may be achieved by
the operator go(1,2) or by break(1,3). However a primary-effect restricted planner will fail
to find either plan, because ~robot-in is not a primary effect of any operator. To preserve
completeness, we have to add more effects to our selection:

go(z,y) {robot-in(y),~robot-in(z)}
carry-ball(z,y) {ball-in(y)}

throw(z,y) {ball-in(y), ~ball-in(z)}
break(z,y) {doox(z,y)}

Now the selection of primary effects is complete.

The completeness of planning also requires that a primary-effect restricted planner be
able to find a solution of any problem that has a primary-effect justified solution. The
Prim-TWEAK algorithm can be shown to satisfy this property.

Theorem 3.1 If Prim-TWEAK expands nodes of the search space in the least-cost-first
order, then it will find a solution plan for any problem that has a primary-effect justified
solution.

A proof of this theorem is similar to the completeness proof for unrestricted TWEAK
(see, for example, [Yang and Murray, 1993]). In sum, planning with a set of primary effects
is completeif (1) the set of primary effects is complete, and (2) the planner is primary-effect
complete. In the rest of the paper, we will concentrate on the problem of finding a complete
selection of primary effects for a given planning domain.

3.2 Solution Quality and the Cost Increase

Our next concern is the quality of solutions found by a planning algorithm. The unrestricted
TWEAK planner is able to find optimal solutions for planning problems, but the use of
primary effects may compromise this property of TWEAK and result in generating non-
optimal plans. For example, consider our last selection of primary effects in the robot
domain and suppose that initially the robot is in room 4. The optimal plan for traveling
from room 4 to room 1 is a single operator break(4,1), the cost of which is 4. However, the
cheapest solution found by a primary-effect restricted planner using the selected primary
effects is (go(4,3), go(3,2), go(2,1)), with a cost of 6.

To formalize the decrease in solution quality due to the use of primary effects, we intro-
duce the notion of the cost increase. Let II be an optimal solution of a planning problem,




and I be a cheapest primary-effect justified solution. The ratio C;:)—sst}(%l is called the cost
increase for the planning problem. In our robot planning example, the cost increase is
6/4 = 1.5. If planning with primary effects is complete and the cost increases of all planning
problems have a finite upper bound, then the least upper bound of this set, C, is called the
greatest cost increase. In other words, C is the smallest real number such that for every
initial state qyni, every goal cgoal, and every unrestricted plan II that achieves ogoal starting
from the initial state ain, there is a primary-effect justified solution plan with a cost at
most C - cost(I) that achieves the goal cgoal from the initial state ajnit. Clearly, the greatest
cost increase C is always greater than or equal to 1. The smaller the value of C, the better
the selection of primary effects in terms of the quality of solution plans.

3.3 Necessary and Sufficient Condition of Completeness

In this section, we relate the value of the greatest cost increase to the completeness property
of primary-effect restricted planning. Specifically, we present a theorem that allows us to
test whether a given selection of primary effects is complete and to estimate the greatest
cost increase.

Consider a plan (i, @, Qlside-eff-goal) consisting of only one operator a, where ;¢ is an
initial state satisfying the preconditions of o and the goal of the plan cside-efi-goal is to achieve
all the side effects of @ while preserving all literals of the initial state not changed by «. The
side effects of « may be formally expressed as (Eff(a) — Prim-Eff{c)), and the literals of the
initial state cuni; not changed by o are (qinit — Eff(@)). The formal expression for the goal is

Ctside-off-goal = (Qimic — Eff(@)) U (Effa) — Prim-Eff(a))

A replacing plan for (Qinit, @, Qside-efi-goal) 1S & primary-effect justified plan that achieves the
goal Qside-eff-goal from the same initial state aju. In other words, a replacing plan must
(1) achieve all side effects of o, and (2) leave all other literals of nit unchanged.

As an example of a replacing plan, suppose that initially the robot is in room 4. Consider
the plan with a single operator break(4,1). The side effects of this operator are robot-in(1)
and —robot-in(4). The plan (go(4,3), go(3,2), go(2,1)) is a replacing plan, since it achieves
both side effects of the break operator and does not change any other literals.

The replacing cost increase C, of (Qnit, @, Olside-efi-goal) 18 the ratio of the cost of an optimal
replacing plan II to the cost of o, C; = —Z%(g)l In our example the cost of the operator
break(4,1) is 4, and the cost of the replacing plan (go(4,3), go(3,2), go(2,1)) is 6, and thus
the replacing cost increase is & = 1.5.

If the values of replacing cost increase of all one-operator plans have a finite upper bound,

then their least upper bound is denoted by Crax.

Theorem 3.2
Completeness: Primary-effect restricted planning is complete if and only if, for every

operator o and every initial state osni satisfying the preconditions of a, the one-operator
plan (Qinit, O, Oside-efi-goal) has a replacing plan.

Cost increase: If replacing cost increases of one-operator plans have a finite mazimum,
Conax, then the greatest cost increase for all solution plans of any sizes equals max(1, Cmax)-
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Informally, the validity of this theorem may be justified as follows. If we are given an
unrestricted plan II that solves some planning problem, then we may replace every operator
of this solution by a corresponding replacing plan. The resulting plan is primary-effect
justified and its cost is at most Cax - cost(II). A formal proof is presented in Appendix A.

Theoretically, the theorem can be applied to check whether a given choice of primary
effects ensures the completeness and near-optimality of a primary-effect restricted planner,
by examining each operator in the domain and finding a replacing plan for the operator’s
side effects in every possible situation. The planner is complete if replacing plans can be
found for every operator. However, this approach is clearly impractical, since the number
of operators and situations to be examined can be huge. Instead, we will use the theorem
as a guideline to design a learning algorithm for automatically selecting primary effects of
operators (Section 5).

The condition stated in the theorem is necessary for the completeness of planning when
every set of literals could be a goal. However, it may be too conservative if, in practice, we
encounter only some subclass of all possible problems. In this case, we could strengthen the
theorem significantly by restricting the set of literals that replacing plans cannot affect. In
Section 8.3 we discuss the notion of problem-dependent primary effects.

3.4 Redundant Primary Effects

Completeness is not the only quality measure for a selection of primary effects. Our next
concern is avoiding redundancy when selecting primary effects.

Intuitively, a primary effect is redundant if it can be changed to a side effect without
compromising completeness and without increasing the costs of solutions produced by a
primary-effect restricted planner. Redundancy is undesirable: it increases the search com-
plexity of planning without improving the quality of the solution plans.

Definition 3.1 A selection of primary effects is called redundant if there erists a primary
effect that can be changed to a side effect without increasing the greatest cost increase C.

Let us look again at the example at the end of Section 2.3. Suppose that the carry-
ball(z,y) operator has two primary effects: robot-in(y) and ball-in(y). In this case,
“demoting” robot-in to the position of a side effect of carry-ball does not increase the
costs of primary-effect justified solution plans, because moving the robot to a new place can
always be accomplished by the cheaper operator go. Thus, making robot-in a side effect
of carry-ball would improve the quality of the selection.

Avoiding redundancy will be one of our main concerns in selecting primary effects. In
general, the task of finding the minimal non-redundant set of primary effects for a given
cost increase is undecidable. However, in practice the problem can be solved approximately
by applying learning techniques. In Section 5 we present a learning algorithm that in most
cases avolds redundancy. '

3.5 Summary

To help the reader understand the rest of the paper, we summarize the technical terms
defined in this section:
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Unrestricted Planner A planner that makes no distinction between primary and side
effects of operators.

Primary-effect Restricted Planner A planner that inserts an operator into a plan only
for achieving the primary effects of the operator.

Primary-effect Justified Plan A plan in which every operator has a justified primary
effect, where a justified effect is an effect necessary for achieving a precondition of

some other operator.

Primary-effect Complete Planner A primary-effect restricted planner that can solve
every planning problem which has a primary-effect justified solution plan.

A Complete Selection of Primary Effects A selection for which every solvable problem
has a primary-effect justified solution plan.

Cost of a Plan The sum of costs of all operators in the plan.

Cost Increase The ratio of the cost of the cheapest primary-effect justified solution plan
to the cost of an optimal solution of a planning problem.

Greatest Cost Increase The greatest value of the cost increase among all planning prob-
lems.

Replacing Cost Increase The ratio of the cost of the cheapest primary-effect justified
solution plan achieving the side-effects of an operator to the cost of the operator.

Redundant Primary Effect A primary effect that can be “demoted” to the position of a
side effect without affecting the greatest cost increase.

4 Analysis of Search Reduction

In this section we compare the running time of a primary-effect restricted planner with that
of an unrestricted planner. The goal of this comparison is to determine the conditions under
which the use of primary effects reduces the running time of the algorithm. In the next
section we show how to use the results of the analysis to guide a learning algorithm in its
choice of primary effects.

We use the Prim-TWEAK and unrestricted TWEAK algorithms in our comparison. We
assume that both planners use best-first search. That is, they always choose the cheapest
incomplete plan to work on next. For simplicity of the analysis, we assume that all operators
in our domain have the same cost. Thus, the cost of a plan is proportional to the number
of operators in the plan.

To determine the time complexity of a planning algorithm, we analyze the search tree
expanded by the planner. Each node in the planner’s search tree corresponds to an incom-
plete plan considered by the planner during its search for a solution. Ezpanding a node
corresponds to modifying a plan in this node by inserting a new operator (see step 3B in
Table 2), imposing an ordering constraint (step 3A) and conflict resolution. As a result of
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expanding a node, several successor plans may be generated in step 6. The branching factor
B of search is the total number of successor plans generated after the execution of step 6.

The running time of a planner depends on the number of expanded nodes in the search
tree and the time for processing each node. For TWEAK, the time spent on a single node
is determined by the time of finding an unsatisfied precondition (step 2). This time is the
same for both unrestricted and primary-effect restricted TWEAK. Thus, we use the number
of nodes in the search space to compare the running time of Prim-TWEAK and that of
unrestricted TWEAK.

We first consider unrestricted planning. We use By, to denote the branching factor of
unrestricted TWEAK. Assume that the size of an optimal solution to a planning problem
is n. Then the total number of nodes in the search tree is

n<1
1+Bm+Bun2+...+Bun"=l—33“———l— (1)
By —1

Next consider the primary-effect restricted TWEAK planner with the greatest cost in-
crease C. By definition of the cost increase, the number of operators in the solution found
by Prim-TWEAK for the same problem is at most C' - n. Let the branching factor of Prim-
TWEAK be Bprim. Then the number of expanded nodes is at most

Cn+1
Bprim " -1

2
Bprim -1 ( )

Let R denote the ratio of running times of primary-effect restricted and unrestricted planners.
Since the running time spent per node is approximately the same for both planners, B is
determined by the ratio of the search-tree sizes:

(Bprimo'n-*-1 - 1)/(Bprim - 1) _ Bprimc n
ns e e o) @

This formula demonstrates the relation between the increase in the costs of plans, C, and
the saving in the planning time, R. The use of primary effects reduces the planning time
when R < 1.

We denote the base of the exponent in Formula 3 by r:

Bprimc
=g (4)

Then Formula 3 may be rewritten as R = O(r"). If r < 1, the saving in running time grows
exponentially with the size of the optimal solution, n. The smaller the value of r, the greater
the saving.

Formula 4 shows that » < 1 when g%:i:i < 1. Solving this inequality w.r.t. C, we con-
clude that a primary-effect restricted planner performs better than an unrestricted planner

when log(B )
og(Bun

C < —ow) (5)
log( Bprim)

We use this formula in our learning algorithm in the next section.
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From the above formulas we can make some general conclusions. First, if we reduce the
number of primary effects, then the branching factor for primary-effect restricted planning
Byrim should decrease. However, if too few eflects are selected as primary effects, then it is
possible that a primary-effect restricted planner has to apply more operators to achieve a
goal, as compared to an unrestricted planner. This may lead to an increase in the C value.
Thus, for a given selection of primary effects, whether or not a primary-effect restricted
planner is more efficient than an unrestricted planner depends on how C' compares with

log!Bun!
log(Bprim)

8 Spec;nd, Formula 4 demonstrates that it is always beneficial to avoid redundant primary
effects. Recall that a primary effect is redundant if it can be demoted to a side effect
without increasing C. Redundant primary effects increase the branching factor of primary-
effect restricted planning, Bprim- Thus, if we could spot a redundant primary effect and
change it to a side effect, we can only decrease the value of r. This leads to our conclusion
that reducing the redundancy in a selection of primary effects always improves the efficiency

of primary-effect restricted planning.

5 Automatically Finding Primary Effects

In this section we describe an inductive learning algorithm for automatically selecting pri-
mary effects of operators. The goal of the learning algorithm is to select primary effects that
improve the efficiency of the planning algorithm, preserve completeness, and guarantee a
high probability of finding a near-optimal solution. Our method is guided by the theoretical
results of the last two sections. Theorem 3.2 of Section 3 states that for a primary-effect
restricted planner to be complete and near-optimal within a cost increase C, there must be
a replacing plan within this cost increase for every operator a; in every situation where oy
is applicable. In Section 4 we demonstrated that a primary-effect restricted planner is more
efficient than an unrestricted planner if C' < i:)—‘;%;. Here we use these two results to guide

the design of our learning algorithm.

The procedure Initial-Choice (Table 3) performs a preliminary selection of primary
effects. After this is done, the learning algorithm (Tables 4 to 5) is used to select additional
primary effects in order to ensure the completeness and near-optimality.

5.1 Initial Choice

If some literal in a planning domain is not a primary effect of any operator, it cannot be
achieved by a primary-effect restricted planner. Therefore, the completeness of planning
requires that every achievable literal [ be a primary effect of some operator. The algorithm
for initial choice, presented in Table 3, makes sure that this condition is satisfied.

Initially, the algorithm asks the user to select primary effects of operators. All effects
specified by the user are marked as primary and will remain primary in the final selection
after the learning phase ! (Section 5.2). If the user selects too few primary effects, or if the

19f the user selects too many primary effects, some of them may be redundant and could be changed back
to side effects. In Section 8.2 we describe an algorithm for “de-selecting” effects to achieve this purpose.
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Initial-Choice

1

2

. For every operator o
(A) ask the user to specify primary effects of o, and
(B) make all user-selected effects primary.
. For every achievable literal  that is not chosen by the user as a primary effect
(A) find the cheapest operator acheap that achieves /, and
(B) make [ a primary effect of ccheap.

Table 3: Finding an initial selection of primary effects.

Learner(UC,A,m)

1

2.

3
4.
S
6

. Loop
For all operators « in the library, call Learn-One-Operator(c, UC, m).
Run Prim-Tweak and TWEAK to obtain average branching factors Bprim and Bun.
HUC=1or UC< kl)—cg’%i]i—“ﬁ%, then exit loop.

. UC:=max(UC-A,1).

. End Loop

Table 4: The Inductive Learner.

Learn-One-Operator(c, UC,m)

1
2

3.

4.

ot

o0

. Set counter = 0.

. Loop

Let aunit be a random initial state satisfying the preconditions of a.

The process for generating the state is explained in detail in the text.

Define the goal state as Qide-efi-goat = (Qinit — Eff{e)) U (Eff{@) — Prim-Eff)).
Use Prim-Tweak to find a plan for the problem (Qinit, Qside-effi-goal)-

The total cost of the plan must be no larger than UC'- cost(c).

If a plan within the cost limit UC" cost(«) is found, then counter := counter + 1.
Else, convert a side effect of a to primary, and reset counter = 0.

exit loop when counter = m.

. End Loop

Table 5: Learning new primary effects for a single operator.
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user does not select any primary effect at all, Initial-Choice and the learning algorithm
will add the missing primary effects automatically.

The algorithm iterates through the literals in the domain. For every literal [ that is not a
primary effect of any operator in the user-specified selection, the algorithm finds a cheapest
operator Qicheap that achieves /, and makes ! a primary effect of cicheap-

Example Suppose that the Initial-Choice algorithm is applied to our robot planning
domain, and that the user has chosen ball-in(z) as the primary effect of the operator carry-
ball(z,y). The procedure finds the cheapest operators achieving the remaining literals,
robot-in, ~robot-in, “ball-in, and door. The cheapest operator that achieves the literals
robot-in and —robot-in is go, the cheapest operator for —ball-in is throw, and the
cheapest operator for door is break. Thus, Initial-Choice selects the following primary

effects:

go(z,y) {robot-in(y), —~robot-in (z)} “ carry-ball(z,y) {ball-in(y)}
throw(z,y) {—ball-in(z)} break(z,y) {door(z,y)}

5.2 Learning Additional Primary Effects

The procedure Initial-Choice may not select all primary effects needed to ensure the com-
pleteness property of the initial selection of primary effects. In this section, we discuss how
additional primary effects are selected.

5.2.1 The Parameters UC, A and m

We start by explaining the meaning of the parameters used in the learning algorithm,
Learner.

Recall that in Section 4 we have shown that a primary-effect restricted planner is more
efficient than an unrestricted algorithm when C' < %%gjﬁ%. The goal of the Learner
algorithm, presented in Table 4, is to find a selection of primary effects that satisfies this
condition.

The Learner algorithm takes several parameters as its input. The first parameter, UC,
is the initial cost-increase value. The final output of Learner will be a set of primary effects

log(Bun)

such that the resultant cost increase is no greater than UC and the condition UC < Tog(Borin)
is satisfied.

The Learner algorithm calls the Learn-One-Operator procedure, explained next, to
select primary effects of each operator. After the algorithm finds a selection of primary effects
for which the cost increase is at most UC, it checks whether UC < 1—3;;—%%5—. The algorithm
determines the branching factors Bun and Bprim for the current selection of primary effects
either by performing experiments using a problem set supplied by the user, or by generating
a number of random problems and accumulating the statistics when solving them. If the
inequality for UC is satisfied, then primary-effect restricted planning is more efficient than
unrestricted planning. In this case, the algorithm considers the selection successful and
terminates.

If the inequality is not satisfied, however, the algorithm decrements UC by some “small”
value A (where A is an input parameter) and calls the Learn-One-Operator procedure
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for each operator again. This time the procedure selects additional primary effects to ensure
a new cost increase, (UC — A). The reduction in the cost-increase value will have the effect
that procedure Learn-One-Operator chooses more effects to be primary, which in turn
reduces the depth of the search and the planning time. The algorithm continues to reduce
UC until it finds a value of UC for which the use of primary effects is more efficient than
unrestricted planning, or until UC drops to its smallest possible value, which is one.

The third input parameter, m, for the Learner algorithm is used in the termination
condition of the Learn-One-Operator procedure (see Table 5). The value of m determines
the probability of finding a primary-effect justified solution within the given cost increase in
the future, when we use the resulting selection of primary effects in planning. In Section 6.1,
we will derive the relationship between m and the probability of finding a solution.

If the user does not specify the input parameters of the Learner algorithm, the algorithm
assigns default values to these parameters. In our implementation, the default values are
UC=2,m=10,and A =0.2.

5.2.2 Learn From Examples

The core of our learning system is the Learn-One-Operator procedure, shown in Table 5.
Given an operator o, this procedure generates a planning problem with a randomly selected
initial state cini and goal Qside-efi-goal: Lhe initial state is one that satisfies the preconditions
of a. The goal state, on the other hand, is as described in Section 3.3: to achieve all side
effects of a while leaving all other literals of the initial state unchanged. With the initial
and goal states, the Learn-One-Operator procedure attempts to find a primary-effect
justified solution to this planning problem using the primary effects selected so far. To
ensure near-optimality, this solution must be within the cost increase UC.

If solutions can be found to m different problems of this type, with randomly generated
initial states that satisfy the preconditions of a, Learn-One-Operator terminates. If,
however, one of the random problems cannot be solved by a primary-effect justified solution
within the cost increase UC, then a side effect of o will be chosen as a primary effect.
Subsequently, the algorithm resets the counter variable and tests m more problems. Every
time the learner fails to find a primary-effect restricted solution, it selects a new primary
effect. Given that the total number of effects of a is E,, the counter variable in the algorithm
cannot be reset more than E, times. Thus, for each operator, the learner will go through
the loop no more than E, - m times.

5.2.3 Random Problem Generation

Step 3 of the Learn-One-Operator algorithm requires to generate a random initial state
Qinite- This state can be any problem state that satisfies the preconditions of a. Formally,
let X, be the set of all states that satisfy the preconditions of «, and let us consider a
probability distribution g, on X, representing how often each state appears just before the
operator « in linearly ordered solution plans. This is the distribution we wish to use in order
to “train” the operator « in the learning process; that is, to learn primary effects of a.
There are two ways to obtain the distribution u, in practice. If we have a large number
of previous solution plans saved in a plan library, we could use this library as a sample space
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for approximating X, and p. This could be done by computing the relative frequency of
the states that appear just before « in solutions from the plan library.

In the absence of a plan library, an alternative is to generate solution plans for problems
with randomly generated initial and goal states, where random generation is based on the
assumption that all states occur equally often, and then to extract from these solutions a
distribution pa of the states in X,. This represents a more conservative selection strategy;
by testing every state with equal probability, we might select more primary effects than
necessary. However, this might be the best thing we can do given the lack of additional

domain knowledge.

Example Consider an application of Learn-One-Operator to our robot domain, with
the initial selection taken from the previous example. Suppose that we call this algorithm
to learn primary effects of the operator throw, and we have U C = 1.5. Consider the initial
state qinit, Where the robot and the ball are in room 1; this state satisfies the preconditions
of throw(1,2). The operator throw does not have primary effects in the current selection,
and its side effect is the new position of the ball. Next, the algorithm generates the goal
state Qgide-efi-goal, Where the goals are to move the ball into room 2 (which is the side effect
of throw(1,2)) and to leave the robot in room 1 (which is the part of the initial state
that must remain unchanged). Given the current selection of primary effects, the optimal
primary-effect justified plan that achieves this goal is (carry-ball(1,2), go(2,1)). The cost
of this plan is 5, while the cost of throw(1,2) is 2, and thus the cost increase is 5/2 = 2.5,
which is greater than the user-specified cost increase UC = 1.5. Therefore, the learner
chooses the justified effect of throw, ball-in, as a new primary effect. (If the operator had
several justified effects, the algorithm could choose any of them. However, in our example
the operator throw has only one primary effect.) The selection of primary effects becomes

as follows:

go(z,y) {robot-in(y), ~robot-in(z)} “ carry-ball(z,y) {ball-in(y)}
throw(z,y) {ball-in(y), —ball-in(z)} break(z,y) {dooz(z,y)}

Now suppose that we call the Learn-One-Operator algorithm to learn additional pri-
mary effects of the operator break, and we still have UC = 1.5. Suppose that the algorithm
generates an initial state ajn;, where the robot is in room 4 and the goal is to move the robot
to room 1, which can be solved by applying the operator break(4,1), the cost of which is
4. (This plan is not primary-effect justified, since changing the location of the robot is not
a primary effect of break.) The learner will find a primary-effect justified plan (go(4,3),
g0(3,2), go(2,1)) that achieves the same goal. The cost of this plan is 6, and thus the re-
placing cost increase is 6/4 = 1.5, which is no greater than the user-defined cost increase
UC = 1.5. Thus, the learner concludes that the effect robot-in of the operator break may
be achieved by a primary-effect justified replacing plan, and does not choose it as a primary

effect. O

5.2.4 A Heuristic Based on Operator Ordering

The Learner algorithm does not specify the order of processing operators. Different orders
may result in different selections of primary effects. We wish to use an order that avoids
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redundancy in selecting primary effects. Our experiments in several domains showed that if
the algorithm processes operators in the order of increasing operator costs, it usually does
not select redundant effects.

We now explain this heuristic in more detail. If some operator o; may be used in a
replacing plan for another operator, oy, then intuitively we should process ey first, since
we can then use its newly selected primary effects while searching for a replacement of c.
Because cheap operators are usually used in replacing more expensive ones, the heuristic
favors processing operators in ascending order of operator costs. If o; and o, have the same
cost, we may first process the operator with a smaller number of side effects. Intuitively,
the larger the number of side effects, the higher the chance of choosing a primary effect
incorrectly among them. If an operator with fewer side effects, say oy, is considered first,
we can use its newly selected primary effects when searching for a replacement of a;, and
thus reduce the number of candidates for a new primary effect among the side effects of .

It could happen that although o; has few side effects, it has a large set of preconditions
that are difficult to achieve. In this case, using @; in a replacing plan could increase the
cost of a solution found by a primary-effect restricted planner. However, this case is already
taken care of by the use of the cost increase value UC; if the replacing-plan cost is over
UC- cost(cy), then more side effects of a; will be chosen as primary effects, and in doing so,
the learning algorithm reduces the cost of solutions.

While in practice the above heuristic ordering almost always produces good results,
it is not a guarantee against redundancy. In Section 8.2 we present an extension of the
learning algorithm that is capable of detecting redundant effects and removing them from
the selection.

The effectiveness of the learning algorithm depends on three main factors: its running
time, the number of examples needed for generating a good selection of primary effects, and
its power in reducing planning time. In the next section, we analyze the first two factors, and
then, in Section 7, we demonstrate empirically that the learning algorithm can dramatically
reduce the planning time.

6 Complexity Analysis of the Learning Algorithm

In this section, we derive a relationship between the value of m, used in the termination
condition of the learning algorithm (see Table 5), and the probability that a near-optimal
solution can be found using the selected set of primary effects. We also estimate the time
complexity of the learning algorithm.

6.1 Failure Probability and the Termination Parameter m

We first analyze the “quality” of the primary effects selected by the Learn-One-Operator
algorithm; that is, the probability that the selected primary effects are sufficient for finding
primary-effect justified solutions to planning problems.

We consider learning primary effects for some operator «.. For the set of primary effects
of a selected by the Learn-One-Operator algorithm, we wish to determine the probability
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that the operator cannot be successfully replaced by a primary-effect restricted plan within

the cost increase UC.
Let p, be an arbitrary probability distribution defined on the set of states that satisfy

the preconditions of the operator . We draw, at random, a state cinit from the set of
states that satisfy the preconditions of c, where the probability of drawing each state is
determined by the distribution p,. Suppose that we try to find a replacing plan for a within
the cost increase UC. We denote by fail(a) the probability that, for a randomly drawn initial
state, such a replacing plan does not exist; we call this probability the failure probability of
replacing o.

Let e, be the number of effects of the operator o.. The possible outcomes of the execution
of the Learn-One-Operator algorithm for the operator a can be divided into the following

(ex + 1) cases:

Casey: zero effects have been selected as primary effects;
Case,: one effect has been selected as a primary effect;
Case,: two effects have been selected as primary effects;
Cases: three effects have been selected as primary effects;

Case,,: all e, effects have been selected as primary effects.

Let fail; be the failure probability in Case;, and Prob(Case;) be the probability that the
execution of the Learn-One-Operator algorithm leads to Case;. Then, the overall failure

probability fail(a) is determined by the following equation:
fail(a) = X2,Prob(Case;) - fail; (6)

Since the algorithm terminates after m consecutive successful attempts to find a replacing
plan for o, we have:
Prob(Case;) < (1 — fail;)™

Substituting this bound for Prob(Case;) into Formula 6, we get the following inequality:
fail(e) < Sizq(1 — fail,)" - foil )

To find the maximal possible value of fail(a), we observe that, for 0 < z < 1, the function
(1 — )™ - z reaches its maximum at the point = = ;n—lﬁ, which can be verified by taking the
derivative of this function and finding the points where the derivative is 0. Therefore, for
0 <z <1, we have:

1 . 1 < 1
m+1 m+1~" m+1

1-z)"-z<(1-

Since, for every i, the value of fail; is between 0 and 1, we conclude from Formula 7 that

1 eq+1
= (8)
m—+ 1 m+1

fail(a) < X2

Now suppose that the user wants to limit the failure probability by some small positive
number §; that is, we have to make sure that fail(a) < 6, for some user-specified value 6.
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We can guarantee this bound on the failure probability by selecting a proper value of m: if
eatl < § then fail(a) < é. To satisfy the inequality fﬁfll < 6, we set m as follows:

m+1
e 22 0

Note that if an optimal solution of some planning problem consists of n operators, then,
for each operator of the solution plan, the probability of failing to replace this operator is é
and, therefore, the probability that we cannot replace at least one operator is bounded by
n-§. Thus, the probability that the problem does not have a primary-effect justified solution
within the cost increase UC is bounded by n - 6.

Readers familiar with the computational learning theory may note the similarity between
our analysis and PAC-learning methods. Indeed, our inductive learning algorithm was in-
spired by learning methods in the style of [Valiant, 1984]. A selection of primary effects
corresponds to a hypothesis to be learned. In PAC learning, we search for a hypothesis that,
with a high probability, is a good approximation of the target concept. A special case of
PAC learning is finding the exact concept with high probability, and our learning algorithm
corresponds to this special case: our algorithm finds a complete selection of primary effects
with probability (1 — 6).

Following the style of the PAC-learning analysis, we now estimate the number of learning
examples required for our algorithm. Since the algorithm takes at most m examples to learn
each primary effect and an operator o may have at most e, primary effects, the maximal
number of examples that may be required to complete the learning process for an operator
is e -m = 0(3;’-). If the planning domain contains k operators and e is the maximal number
of effects of an operator, then the total number of examples for learning primary effects of
all operators is determined by the following expression:

This relationship between the number of examples and the reciprocal of the failure proba-
bility is called the sample complezity of a learning algorithm. For our algorithm, the failure
probability § can be made arbitrarily small by increasing the number of training examples.

6.2 Time Complexity

We now analyze the running time of the learning algorithm. Let L be the number of literals
in the problem domain, and E be the total number of effects of all operators in the library,
that is, E = 3, €. Then, the running time of the Initial-Choice algorithm is O(L - E).
The other part of the learning process is the execution of the Learner algorithm (Tables 4
and 5). The most expensive component of this algorithm is the application of the planning
algorithm, Prim-TWEAK, to find a replacing plan. Let ccheap be the cheapest operator in the
library, cexp be the most expensive operator, and UC be the greatest cost increase specified
by the user. Then, the number of operators in a primary-effect justified replacement of a

single operator is at most ¢ = U C’-C-ZZ—:E:‘—:‘%. Let p be the maximal number of preconditions of
cheap

an operator in the problem domain and e be the maximal number of effects of an operator.
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Then, the time spent for processing a single node in the search tree of Prim-TWEAK is
O(a2e*p) [Woods, 1991]. The number of nodes in the search tree is O(Bun®), where Buy is
the branching factor of an unrestricted planner.

Finally, the number of examples considered by the learner is O(k%z-), where k is the
number of the operators in the problem domain, and thus the Prim-TWEAK planner is
invoked O(k%i) times. Putting these expressions together, we find that the running time of
learning is as follows:

where @ = 7=t (2exp)_
cost(creheap)

7 Planning Time Reduction

In this section, we present a series of experiments that demonstrate the effectiveness of our
learning method in reducing the planning time in several different planning domains. In
what follows, we first describe a family of domains used in our experiments. Then we show
how the efficiency of primary-effect restricted planning in these domains depends on (1) the
number of goals and the length of an optimal solution plan (2) the relative costs of operators,
and (3) the number of different ways to achieve the same literal.

7.1 Artificial Test Domains

We have implemented Prim-TWEAK, unrestricted TWEAK, and the learning algorithm
in Allegro Common Lisp on a Sun-4 Sparc Station. An option is added to the planner
so that a problem can be solved either using Prim-TWEAK or unrestricted TWEAK. We
call the combination of Initial-Choice and Learner algorithms Prim-Learn, which is
implemented as a separate module and which calls TWEAK as a subroutine.

We ran our experiments with an artificial domain similar to the domains described in
[Barrett and Weld, 1992]. The problem domain has a number of features that can be varied
independently, enabling us to perform controlled experiments.

In this domain, a planning problem is defined by n initial-state literals, denoted by
inity, inity, .., init,, and n goal literals, goal;, goal,, .., goal,. There are also n operators, named
Op,, Op,, .., Op,. Each operator Op; has the single precondition nit;. Op, removes the
initial-state literal init;_; and establishes the goal literals goal;, goal;,, .., goal;;_,. Thus,
each operator has (k+1) effects: one negative effect and k positive effects. (The goal literals
are enumerated modulo n, that is, a more rigorous notation for literals established by Op; is
900l 1mod » 998 41) mod s -+ 900 i 1k-1) modn-) The cost of the operator Op; is denoted by

cost;.
In Lisp implementation, each operator Op; is described as follows:

(def-operator
:name Op;
:preconditions init;
.effects ((not init;—1) goal; goal .y ... goal ;)
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:cost cost;

To help the reader understand the domain better, let us consider an example with n = 10
and k = 1. In this case, every operator Op, ach1eves only one goal literal, and a solution
plan is simply the sequence of operators:

Op17 Op27 0p3a Op47 Op57 Op67 Op?) Op87 Op93 OplO

On the other hand, if ¥ = 5, then the first operator Op, achieves the first five goal literals,
and Opg achieves the rest. Thus, a solution plan in this case is

Opla Op6
Our artificial domain allows us to vary the following problem features:

Goal Size The number of goal literals, n, can be changed. The length of an optimal solution
changes in proportion to the number of goal literals.

Cost Variation The cost variation is the statistical coefficient of variation of the costs of
operators, defined as (S.s:/cost), where S, is the standard deviation of the costs,
and cost is their mean. Intuitively, the cost variation determines the relative difference
between costs of different operators.

Effect Overlap The effect overlap, k, is the average number of operators establishing the
same literal. In our experiments the effect overlap varies from 2 to 6.

Note that if the effect overlap is 1, then all effects must be selected as primary, and primary-
effect restricted planning is equivalent to unrestricted planning.

We vary these three features in our controlled experiments. Even though this test domain
is artificial, it demonstrates some important characteristics of many real-world domains. For
example, in the real world if the goal size increases, one would expect that the solution
plan for achieving the goals should also increase in size. Likewise, if the effect overlap
increases then every operator can achieve a larger number of goals. As a result, the number
of alternative solutions to a problem should increase, while each solution should get smaller.
All of these phenomena could be shown to occur in our domain.

For each setting of the domain parameters, we run our learning algorithm for each plan-
ning operator to find primary effects of the operator. The termination parameter m is set
to 10. The training set for each operator is generated using a random-state generator.

Our experiments show the following properties of planning with primary effects:

1. Planning with primary effects selected by Prim-Learn is, on average, more efficient
than planning without primary effects.

2. The saving in planning time due to the use of primary effects exponentially increases
with an increase of the solution length.
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3. A significant reduction of planning time is achieved for any cost variation.

4. As the effect overlap increases, the efficiency improvement of planning with primary
effects first increases and then decreases.

A small effect overlap results in smaller efficiency improvement because almost all effects
are selected as primary, thus making primary-effect restricted planning close to unrestricted
planning. A possible explanation of the efficiency decrease for a large overlap is that solutions
found by the primary-effect restricted planner are longer than unrestricted solutions, which

results in a larger search depth of planning.

7.2 Varying Solution Length

In this section we demonstrate that the saving in Prim-TWEAK’s running time grows ex-
ponentially with the solution length. We consider domains with effect overlaps 2 and 4.
The operator costs, cost;, are either constant for all operators or linearly grow with z. The
solution length of a problem is defined as the length of an optimal solution for this problem,
found by unrestricted TWEAK. In all experiments, the initial user-defined cost increase UC
is set to 2, the decrement A is set to 0.2, and m is set to 10. The number of operators and
goal literals, n, varies from 1 to 20. Goals of the planning problems are random permutations
of the goal set {goal;, goal,, .., goal, }.

The results of experiments are presented in Figures 3 to 6. The graphs show the running
times of unrestricted TWEAK (UT) and Prim-TWEAK (PT) for problems with different
solution lengths. Every point on each figure is the average of five random problems solvable
in 2 minutes of CPU time by unrestricted TWEAK.

For the effect overlap k = 2, we considered problems with an optimal solution up to 10
operators. Thus, for 20 goals an optimal solution contains only 10 operators. Likewise, for
k = 4, we used problems with up to 5-operator solutions (because unrestricted TWEAK
could not find longer solutions in 2 minutes). For every distinct set of operators, we ran the
Prim-Learn algorithm to select primary effects. Then every problem was solved by both
Prim-TWEAK and unrestricted TWEAK.

The running time taken by Prim-Learn is not shown in the graphs. Instead, it is
summarized in Table 6, together with branching factors of both unrestricted TWEAK (UT)
and Prim-TWEAK (PT). Recall that Prim-Learn is used only once for a given planning
domain. If many problems are solved in the same domain, the amortized time for learning
is usually negligible.

The figures show that the time saving of planning with primary effects increases with an
increase of the solution length. Prim-TWEAK performs better than unrestricted TWEAK in
all considered cases. Table 6 shows that the use of primary effects selected by Prim-Learn
reduces the branching factor of search twofold.

7.3 Cost Variance

Next we consider the effect of cost variation on planning time. Each operator Op; is asso-
ciated with a cost value cost;, i = 1,...,n, which is a function of <. This function can be
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Overlap k | Learning Time (msec) | Average Branching Factor
uT PT UuT PT
2 0 3733 2.0 1.04
4 0 7533 4.0 1.61
6 0 12683 6.0 2.67

Table 6: Learning time and branching factor. (The number of operators is n = 20)

Cost function Cost variation | PT / CPU (msec) | UT / CPU (msec)
Constant, cost(Op;) =1 0.0000 338.67 42910.84
Linear, cost(Op;) =2 -1+ 10 0.3720 269.17 16469.67
Exponential, cost(Op;) = 2* 2.3805 202.83 17274.83

Table 7: Comparison for different costs of operators.

constant, linear, or exponential. The number of operators and goals in these experiments 1s
n = 20. For every cost function, we ran our planners on 5 different problems. The initial
value of UC'is 2, and the decrement A is 0.2.

The test results are shown in Table 7. The first column lists the cost functions. The
second column presents the statistical variation for each cost function. The third and fourth
columns compare the CPU time of Prim-TWEAK (PT) and unrestricced TWEAK (UT)
under each cost function. The table shows that the use of primary effects reduces the
planning time for every cost function. In these experiments, Prim-TWEAK runs 60 to 130
times faster than unrestricted TWEAK.

7.4 Effect Overlap

Now we consider performance of Prim-TWEAK for different values of the effect overlap.
Recall that the effect overlap k is defined as the average number of operators achieving the
same literal. The number of operators and goals in our experiments is again n = 20. We
consider domains with constant, linear, and exponential cost functions. We vary the effect
overlap k from 2 to 6. (Recall that if k¥ = 1, then primary-effect restricted planning is
equivalent to unrestricted planning.) For each cost function and each effect overlap we ran
Prim-Learn to select primary effects and then solved 5 different problems using primary-
effect restricted and unrestricted planners. Figures 7 to 9 show the running times of Prim-
TWEAK (PT) and unrestricted TWEAK (UT) for every effect overlap under different cost
functions. The graphs show that, for every effect overlap, the use of primary effects results
in considerable saving of running time.

We note from these graphs that when the effect overlap k increases past a certain value
(4 or 5), the planning time for both planning algorithms decreases. This phenomenon has an
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Figure 7: The cost function is constant: cost(Op;) = 1.

explanation in terms of search complexity. With a fixed number of goals, when effect overlap
increases, the number of goals that each operator can achieve also increases, which leads to
the decrease in the length of an optimal solution. A decrease in the length of a solution
implies a reduction in the depth of a planner’s search. Therefore, for both Prim-Tweak and
unrestricted Tweak, as k increases, the search depth decreases even though the branching
factor increases. The net effect is that when k is greater than a certain value, the planning
time decreases, as we observe from these graphs.

7.5 Experiments in a Robot Domain

In this section we describe the performance of our algorithm in a simple robot world,
a modified version of the robot domain from [Fikes and Nilsson, 1971] (see Figure 10).
The robot can move between rooms, open and close doors, carry boxes, and climb a ta-
ble. The predicates in the domain include predicates describing locations and doors in
each room, e.g., location-inroom(doori2, roomi), predicates indicating the location of
the robot, e.g., robot-inroom(room3), predicates indicating the location of the boxes,
e.g., box-inroom(box1, rooml), and predicates indicating the status of the doors, e.g.,
status(door12, open). The actions of the robot are encoded by the operators listed in
Tables 8 and 10. (The words preceded by “?” in the operator description denote vari-
ables in our implementation.) The full encoding of the table-climbing operators is shown in
Figure 10.

We ran our learning algorithm with A = 0.2, m = 10, and UC = 2. The learning time
was 2.98 CPU seconds. The primary effects selected by the algorithm are shown in Table 8.
Notice that these primary effects correspond to human intuition. For example, since pushing
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I

Effects

Cost

Selected Primary Effects

(goto-room-loc ?from ?to ?room)

(robot-at 7to)
(not robot-at 7from)

1

(robot-at 7to)
(not robot-at ?from)

(go-thru-dr ?from-room ?to-room ?door)

(robot-inroom 7to-room)
(not robot-inroom ?from-room)

2

(robot-inroom ?to-room)
(not robot-inroom ?from-room)

(climb-down ?table ?room)

(robot-on-floor)
(not robot-on Ttable)

1

(robot-on-floor)
(not robot-on ?table)

(open ?door

?room)

(status 7door open)
(not status 7door closed)

1

(status ?door open)
(not status ?door closed)

(close ?door

?room)

(status 7door closed)
not status 7door open
( p

1

(status 7door closed)
(not status 7door open)

(push-box ?box ?from ?to ?room)

(robot-at 7to)
(box-at ?box ?to)
(not robot-at ?from)
(not box-at ?box ?from)

2

(box-at ?box ?to)
(not box-at ?box ?from)

(push-box-thru-dr ?box

?from-room ?to-room ?door)

(robot-inroom ?to-room)
(box-inroom ?to-room)
(not robot-inroom ?from-room)
(not box-inroom ?from-room)

4

(box-inroom ?to-room)
(not box-inroom ?from-room)

(carry-box-down ?box ?table 7room)

(robot-on-floor)
(box-on-floor ?hox)
(not robot-on ?table)

(not box-on-table ?box ?table)

4

(box-on-floor ?box)
(not box-on-table ?box ?table)

Table 8: The operators of the robot-box domain
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Figure 10: The robot domain used in the experiments

(defoperator

:name ’(climb-up ?table ?room)

:precond ’((robot-at 7table)
(robot-inroom ?room)
(robot-on-floor)
(table-inroom ?table ?room))

:effects ’((robot-on ?table) ;**

(not robot-on-floor)) ;**

:cost 1)

Table 9: Operators for climbing a table. Selected primary effects are marked by t

|| (defoperator

I :name ’{(carry-box-up ?box ?table ?room)
Il :precond ’((robot-at ?table)

11 (robot-inroom ?room)

I (robot-on-floor)

I (box-at 7table)

I (box-inroom ?box 7room)

I (box-on-floor ?box)

I (table-inroom ?table ?room))
11 ;effects ’((robot-on ?table)

I (box-on-table ?box 7table) ;**
11 (not box-on-floor ?box) ;**
I (not robot—on-floor))

[ :cost 4)

XL
f “HED
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Goal Cost | Sol. Len | CPU time, ms | Branch. Factor | Expanded Nodes
PT UuT |PT UT PT UT
(robot-on table-B) 1 1 50 50 1.0 1.5 2 2
(status doorl2 open) 2 2 183 217 | 14 2.0 7 7
(robot-inroom rooml) | 5 3 267 350 | 1.3 1.7 9 11
(box-at box1 doorl2) 7 5 800 1933 | 1.3 2.1 26 56
(robot-on table-C) 9 3] 783 1200 | 1.3 2.3 26 36
(box-on box1 table-A) | 7 5 800 1250 | 1.3 2.0 181 368
(status doorl2 closed) | 8 5 3466 12050 | 1.3 1.8 98 333
(robot-on table-A)
(box-at box2 table-B) | 14 7 6550 14450 | 1.3 2.1 26 38

Table 10: Prim-TWEAK (PT) and unrestricted TWEAK (UT) in the robot domain

a box between rooms is more expensive than moving a robot alone, the algorithm selects
the change in the position of the box as a primary effect of pushing a box.

Table 10 shows the performance of Prim-TWEAK (PT), with the primary effects selected
by the learner, and unrestricted TWEAK (UT) on eight different problems in the robot
domain. The initial state of all problems is as shown in Figure 10. All doors are initially
closed, and the robot starts in room 2. In all eight problems, the Prim-TWEAK algorithm
found optimal solution plans. (The costs of the optimal solutions are shown in the “Cost”
column of Table 10, and the optimal solution lengths are shown in the next column.) As can
be seen from the table, Prim-TWEAK is considerably more efficient in our robot domain

than unrestricted TWEAK.

8 Extensions

We have developed a theory of primary-effect restricted planning and presented an algorithm
for selecting primary effects. In this section we briefly mention several additional tricks that
often improve the quality of selections of primary effects found by our algorithm.

8.1 Heuristics for Choosing Primary Effects
8.1.1 Improvements to Learn-One-Operator

The described algorithm Learn-One-Operator may be improved. When we choose a new
primary effect among several justified effects of o, we may modify our algorithm to determine
which effects of a are harder to achieve by a replacing plan. When finding a replacing plan,
a primary-effect restricted planner can be modified to achieve as many justified effects of
a as possible (but not necessarily all of them) by a replacing plan. This means that the
planner inserts primary-effect justified operators in such a way that (1) their total cost is
at most UC - cost(), (2) the preconditions of all newly inserted operators are satisfied, and
(3) as many justified effects of & as possible are satisfied. Such a replacement may be found
by Prim-TWEAK if it always achieves unsatisfied preconditions of newly inserted operators
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De-selecting -

For every operator « in the library:

1. Remove all primary effects of o added by Learner.

2. Call Learn-One-Operator with a.

3. If Learn-One-Operator selects a new primary effect for o during the last m examples,
then go to step 2.

Table 11: De-selecting primary effects.

before achieving unsatisfied effects of o. If some of the justified effects of « are not achieved
in the resulting plan, the learner selects one of these unachieved effects as a new primary
effect.

8.1.2 Using Abstraction as a Selection Heuristic

Another heuristic in choosing primary effects is based on an algorithm for generating ordered
abstraction hierarchies described in [Fink and Yang, 1992b]. This algorithm selects primary
effects in such a way as to mazimize the number of levels in an abstraction hierarchy for
primary-effect restricted planning. Our experience shows that using this as a heuristic is often
useful for finding good selections of primary effects. The algorithm helps avoid redundant
primary effects and often leads to selections that correspond to the human intuition.

The use of this heuristic leads to the generation of a fine-grained ordered abstraction
hierarchy for a resulting selection of primary effects. The use of this hierarchy in abstraction
planning further improves efficiency [Knoblock, 1991a).

8.2 De-selecting Primary Effects

Once our learning algorithm has selected a primary effect, the effect remains primary and
eventually becomes a part of the final selection. However, primary effects selected later can
make this effect redundant. Besides, some primary effects may become redundant if we
extend the library of operators in a problem domain with new operators or if we decide to
set a higher cost increase UC. To avoid the problem of redundancy, the learning algorithm
can be augmented to de-select some primary effects, that is, to convert them back into side
effects.

The algorithm for de-selecting primary effects is presented in Table 11. Before learning
primary effects of an operator o, the De-selecting algorithm removes all primary effects of
a learned previously. When learning primary effects of o again, the algorithm will not select
the redundant effects.

Upon execution, superfluous effects are removed by this algorithm from the current se-
lection. However, some non-redundant primary effects may be removed in this process as
well. To restore the completeness of the selection, we run the Learner algorithm again.
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8.3 Problem-Dependent Primary Effects

Our theory of primary effects and the learning method can be considered as problem-
independent, since they assume that every problem can be encountered in a given domain.
In reality, we might be only interested in a subset of planning problems, and in that case,
we could strengthen our results.

A subset of planning problems may be solved using only a subset O of the operators in
a given domain. These operators in turn restrict the set L of literals that occur in solution
plans. As a consequence, in Theorem 3.2, we only need to require that our replacing plans
do not modify the literals in L, and we only need to worry about learning primary effects
for operators in O. In addition, the learning algorithm needs to consider a smaller set of
example plans. Thus the consequence of restricting our attention to a subset of problems
is that the learning process will be more efficient, the selected primary effects will be fewer,
and the primary-effect restricted planners will require less time to find solutions.

9 Conclusions

In this paper we have presented a formalism of the use of primary effects in planning and
a learning algorithm for automatically selecting primary effects. Our main results are sum-

marized below.

1. The use of primary effects may result in an exponential amount of reduction in planning
time. However, an improper selection of primary effects can make a planner produce
non-optimal solution plans, increase running time of a planner, or make a planner
incomplete. To address this problem, we have identified several main factors that
determine the completeness of planning with primary effects and presented a necessary
and sufficient condition of completeness. The most important factor is the greatest
cost increase C associated with a selection of primary effects. This factor not only
determines the optimality of solutions found by a primary-effect restricted planner,
but also the running time of the planner. If the greatest cost increase equals 1, then
primary-effect restricted planning never performs worse than unrestricted planning.

2. We have presented an inductive learning algorithm that automatically selects primary
effects. The algorithm finds a complete selection of primary effects by analyzing a set
of example plans. The sample complexity of the algorithm is linear in the size of the li-
brary of operators, such that with a sufficient number of example plans, primary-effect
restricted planning can produce near-optimal plans with high probability. Further-
more, our experimental results have shown that in most cases the learned primary

effects help reduce the planning time exponentially.
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A Proof of Theorem 3.2

Completeness: Primary-effect restricted planning is complete if and only if, for every
operator o and every initial state oy satisfying the preconditions of o, the one-operator

plan (Qinit, @, Oside-efi-goal) 1as a replacing plan.
Cost increase: Let Cpax be the mazimum of replacing cost increases. Then the greatest

cost increase equals max(1l, Cpmax)-
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Proof We prove the second part of the theorem, that the greatest cost increase is equal to
the maximum of replacing cost increases. The proof of the first part is similar.

Let Cpax be the maximum of replacing cost increases. First assume that Crax > 1. We
have to show that

(1) the cost increase for every planning problem is no greater than Cax, and
(2) there is a planning problem for which the cost increase is exactly Cmax-

(1) Consider an arbitrary planning problem with an optimal linear solution II =
(Uinity Q15 Q2--ey Cny Qlgoal)- We have to find a primary-effect justified plan achieving the same
goal with a cost at most Cpay - cost(II). We may convert our optimal solution into a primary-
effect justified plan by replacing some of its operators. We begin by considering the last
operator, o,. If o, is not primary-effect justified, we substitute a replacing plan instead
of a,. The cost of this replacing plan is at most Cpax - cost(an). If ap-1 is not primary-
effect justified in the resulting plan, we also substitute a replacing plan instead of it. Then
we repeat this for a,_s, a,-3, etc., until all operators without justified primary effects are
replaced by primary-effect justified plans. It may be shown that when we replace some op-
erator a;, all operators after it remain primary-effect justified. Therefore, we have obtained
a primary-effect justified plan. The cost of this new plan is at most

Craax - €08H(01) + Crnax * cost(@z) + ... + Crnax - cost{an) = Crax - cost(II)

(2) Let (Ginit, @, Oside-efi-goat) be such a single-operator plan that the replacing cost in-
crease of (Qinit, O, Qside-efi-goal) 15 Cmax, the largest of the replacing cost increases. Notice that
primary effects of « are not goal literals. Thus, the plan (ojnit, @, Qlside-eff-goal ) 15 Ot primary-
effect justified. The cost of this plan is cost(a), while the cost of the cheapest primary-effect
justified plan that solves this planning problem is Cmax - cost(a). Thus, the cost increase for
this problem is at least Cipyax-

Let us also consider the case when Cpax < 1. Then Part (1) of the proof shows that,
for an unrestricted plan II, each operator « of II that is not primary-effect justified may
be replaced by a subplan cheaper than « itself, and thus the cost of a new plan after all
replacements is at most the cost of the initial plan II. Thus, the cost increase cannot be
larger than 1. On the other hand, the cost increase is af least 1. Thus, the cost increase for

every problem is 1. o




